Inverse Spectral Problems for Weighted Graphs
نویسندگان
چکیده
The paper is devoted to inverse spectral problems for weighted graphs. We give the sharp upper bound reconstruction number of trees and unicyclic
منابع مشابه
Inverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملDesigning Optimal Spectral Filters for Inverse Problems
Spectral filtering suppresses the amplification of errors when computing solutions to ill-posed inverse problems; however, selecting good regularization parameters is often expensive. In many applications, data are available from calibration experiments. In this paper, we describe how to use such data to precompute optimal spectral filters. We formulate the problem in an empirical Bayes risk mi...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Open problems for equienergetic graphs
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Two graphs of the same order are said to be equienergetic if their energies are equal. We point out the following two open problems for equienergetic graphs. (1) Although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...
متن کاملTurán problems for integer-weighted graphs
A multigraph is (k, r)-dense if every k-set spans at most r edges. What is the maximum number of edges exN(n, k, r) in a (k, r)-dense multigraph on n vertices? We determine the maximum possible weight of such graphs for almost all k and r (e.g., for all r > k) by determining a constant m = m(k, r) and showing that exN(n, k, r) = m ( n 2 ) +O(n), thus giving a generalization of Turán’s theorem. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mogilâns?kij matemati?nij žurnal
سال: 2022
ISSN: ['2617-7080', '2663-0648']
DOI: https://doi.org/10.18523/2617-70805202226-32